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Functional neuroimaging of high-risk
6-month-old infants predicts a diagnosis of autism
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Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive
behaviors that typically emerge by 24months of age. To develop effective early interventions that can potentially
ameliorate the defining deficits of ASD and improve long-term outcomes, early detection is essential. Using pro-
spective neuroimaging of 59 6-month-old infants with a high familial risk for ASD, we show that functional
connectivity magnetic resonance imaging correctly identified which individual children would receive a research
clinical best-estimate diagnosis of ASD at 24months of age. Functional brain connectionswere defined in 6-month-old
infants that correlated with 24-month scores on measures of social behavior, language, motor development, and
repetitive behavior, which are all features common to the diagnosis of ASD. A fully cross-validated machine
learning algorithm applied at age 6 months had a positive predictive value of 100% [95% confidence interval
(CI), 62.9 to 100], correctly predicting 9 of 11 infants who received a diagnosis of ASD at 24 months (sensitivity,
81.8%; 95%CI, 47.8 to 96.8). All 48 6-month-old infants whowere not diagnosedwith ASDwere correctly classified
[specificity, 100% (95% CI, 90.8 to 100); negative predictive value, 96.0% (95% CI, 85.1 to 99.3)]. These findings
have clinical implications for early risk assessment and the feasibility of developing early preventative interventions
for ASD.
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INTRODUCTION
Autism spectrum disorder (ASD) is a neurodevelopmental disorder
characterized by deficits in social behavior and the presence of restric-
tive and repetitive behaviors (1). It is estimated that 1 in 68 children
are affected by the disorder (2), and despite tremendous research efforts,
ASD still confers substantial burden to affected individuals, their families,
and the community (3, 4). Intervention is critically important, and there
is a general consensus that early detection pairedwith early intervention
would have a significant impact on improving outcomes (5–7).

One barrier to early (that is, before 24 months) detection is that the
defining behavioral characteristics of ASD generally unfold during the
second year of life, typically showing consolidation of the full behavioral
syndrome by about 24 months of age or later (8, 9). Behavioral differ-
ences in ASD have been observed as early as 6 months of age in char-
acteristics such as gross motor ability, visual reception, and patterns of
eye tracking (10–14); however, these associated characteristics have not
been able to predict which children will later receive a diagnosis. Given
the known plasticity of the brain and behavior during the first year of
life, together with the absence of the defining features of the disorder,
intervention during this presymptomatic phase, before consolidation of
the full syndrome of ASD, is likely to show considerably stronger
benefits compared with later treatments (5).

Research on neurodegenerative disorders has shown that changes in
the brain are often seen preceding clinical manifestations. For example,
in Parkinson’s disease, about 50% of the neurons in the substantia nigra
are lost before clinical features become apparent (15). This suggests that
brain-related changes appear earlier than behavioral changes and may
be useful in predicting future behavioral diagnosis. In ASD, a number of
selected morphological (16–18) and electrophysiological (19) brain dif-
ferences have been reported as early as 6 months of age in infants later
diagnosed with ASD; however, the reported group differences in these
specific brain structures have not yet shown the sensitivity and specific-
ity required to be effective for the early detection of ASD.

Given the complexity and heterogeneity of ASD, methods for the
early detection of ASD using brainmetrics will likely require information
that is multivariate, complex, and developmentally sensitive. Recent re-
search using functional connectivity magnetic resonance imaging
(fcMRI) has linked the functional organization of the human brain to
individual cognitive profiles (20–22). Thesemeasures of brain functional
connectivity are reliable (23) and can accommodate participants as young
as neonates (24). Furthermore, in conjunction with machine learning
1 of 8
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approaches, fcMRI data have provided predictions of brain maturation
(25, 26) and diagnostic category (27–32) at the single-subject level. By
training machine learning algorithms to identify underlying patterns
that separate individuals into these different groups, researchers can
predict which group a new individual will likely be in (33).

Here, we postulated that brain functional connectivity at 6 months
of age would capture the complexity of ASD and provide a robust
method for predicting later diagnosis. Our results revealed that ma-
chine learning, applied to fcMRI data at 6 months of age in infants at
high familial risk for ASD, can accurately predict an ASD diagnosis at
24 months of age.
http://stm
.sciencem

D
ow

nloaded from
 

RESULTS
A cohort of 59 infants with a high familial risk for ASDwas included in
this study. There were 11 infants diagnosed with ASD at 24 months
of age and 48 infants who did not have ASD at 24 months of age.
Prospective neuroimaging data were collected from each infant at
6 months of age while they were sleeping naturally. Cognitive, behav-
ioral, and diagnostic assessments were completed at their follow-up visit
at 24 months of age.

Brain functional connectivity and infant behavior
A set of 230 regions that were previously defined across the whole brain
(see Materials and Methods) was used to create functional connectivity
matrices from each participant’s functional MRI data at their 6-month
visit. This resulted in 26,335 pairs of regions used for further analysis
that represented the whole-brain functional organization of an individ-
ual infant. From this complete set, two subsets of brain-behavior
features were defined separately for visualizing group discrimination
and for the classification analysis.
Emerson et al., Sci. Transl. Med. 9, eaag2882 (2017) 7 June 2017
To visualize the ability of early brain features to discriminate be-
tween ASD and non-ASD groups of infants, we computed brain-
behavior correlations with each participant’s 24-month assessment
scores of social interactions, communication, motor development,
and repetitive behavior. Table 1 shows the average raw scores and SE
for each of these behavioral measures by group. In addition, between-
groups t tests were calculated across all the functional connections,
and the intersection of functional connections that showed both a
nominal brain-behavior correlation and a between-groups difference
(P < 0.05) was used to define a feature space across all participants.
This resulted in a total of 974 functional connections in the 6-month-
old brain that showed a relationship with behavior at 24 months and
were different between groups. Together, these functional connections
constituted <4% of the potential 26,335 total functional connections
studied. The participants’ scores on the first and second principal
components of this feature space were plotted against each other in
Fig. 1, revealing an evident linear separation between the ASD and
non-ASD groups.

Predicting individual 24-month clinical diagnoses
To determine whether 6-month-old functional connectivity features
were capable of predicting the clinical diagnostic outcome of an indi-
vidual infant, we used a fully cross-validated approach with a “nested”
leave-one-out procedure. In this procedure, the diagnostic outcome of
each infant was predicted from an independent training sample, without
being used to define features or build the classifier. The featureswere chosen
within each training sample as showing a brain-behavior correlation,
creating a feature space that reflected functional connections in 6-month-
old infants that showed a relationship with 24-month-old behaviors.
This process created 59 sets of features that were used to train individual
classifiers. This procedure (detailed in Materials and Methods) allowed
 on June 7
ag.org/
Table 1. Average raw scores for each of the 24-month infant assessments. SE is shown for both high-risk ASD and non-ASD groups. The number of
participants that contributed to each measure is listed in parentheses. The details of the assessments as well as the specific items and subscales are included in
Materials and Methods. Behavioral tests included the Repetitive Behaviors Scale–Revised (RBS-R), Mullen Scales of Early Learning (MSEL), and Communication
and Symbolic Behavior Scales (CSBS).
, 20
Assessment
 n (ASD+/ASD−)
 Measure
 ASD
 Non-ASD
17
CSBS: social communication
 50 (8/42)
 Social interaction
 0.75 ± 0.3
 2.51 ± 0.2
CSBS: social communication
 50 (8/42)
 Joint attention
 1.63 ± 0.6
 3.66 ± 0.3
MSEL: cognitive ability
 57 (10/47)
 Expressive language
 18.91 ± 1.4
 20.82 ± 0.6
MSEL: cognitive ability
 58 (11/47)
 Fine motor
 24.08 ± 1.0
 23.84 ± 0.3
MSEL: cognitive ability
 53 (10/43)
 Gross motor
 24.64 ± 0.5
 25.79 ± 0.4
MSEL: cognitive ability
 57 (10/47)
 Visual reception
 20.18 ± 2.0
 23.58 ± 0.6
MSEL: cognitive ability
 58 (11/47)
 Receptive language
 24.42 ± 0.8
 26.53 ± 0.5
RBS-R: repetitive behavior
 47 (9/38)
 Self-injurious
 2.3 ± 1.0
 0.16 ± 0.1
RBS-R: repetitive behavior
 47 (9/38)
 Stereotyped
 3.4 ± 0.8
 0.31 ± 0.1
RBS-R: repetitive behavior
 47 (9/38)
 Sameness
 4.9 ± 0.9
 0.9 ± 0.2
RBS-R: repetitive behavior
 47 (9/38)
 Ritualistic
 2.2 ± 0.5
 0.5 ± 0.1
RBS-R: repetitive behavior
 47 (9/38)
 Compulsive
 3.4 ± 0.4
 0.4 ± 0.1
RBS-R: repetitive behavior
 47 (9/38)
 Repetitive
 1.8 ± 0.9
 0.41 ± 0.1
2 of 8
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each test infant to be predicted individually, requiring only information
from their 6-month-old functional MRI scan.

The classification accuracy using functional connectivity data in
6-month-old infants was 96.6% [95% confidence interval (CI), 87.3 to
99.4; P < 0.001]. Figure S2 marks the observed accuracy of this classifi-
cation analysis against the null distribution generated using randomized
diagnosis labels (see Materials and Methods). Sensitivity of this ap-
proach was 81.8% (95% CI, 47.8 to 96.8), and specificity was 100%
(95% CI, 90.8 to 100). The probability that infants with a positive clas-
sification truly had ASD (positive predictive value) at 24 months was
100% (95%CI, 62.9 to 100). The probability that infants with a negative
classification did not have ASD (negative predictive value) at 24months
was 96.0% (95%CI, 85.1 to 99.3). Infants whowere incorrectly classified
are circled in Fig. 1, within the feature space defined across the whole
group. Using the classification feature sets, Fig. 2 presents a subset of the
connections that show reduced or increased functional connectivity in
6-month-old infantswhodevelopedASD.These features appear in each
of the 59 independent classifiers built during the nested cross-validation
procedure (see Materials and Methods) but do not represent the full
feature set of any individual classifier.

Leave-10-out classification analysis
To test the generalizability and validity of our results, we used a similar
classification analysis with a greater number of participants held
independent (leave-10-out) to show that our results were fairly robust.
On average, the leave-10-out analysis performed with 92.7 ± 0.7%
accuracy, indicating that it correctly predicted between 9 and 10 of
the 10 independent participants for most of the 1000 iterations and
was nearly as accurate as the nested leave-one-out analysis. This result
suggests that the classifier may be able to generalize to new samples of
infants and is fairly robust.
Emerson et al., Sci. Transl. Med. 9, eaag2882 (2017) 7 June 2017
DISCUSSION
The public health importance of ASD has been increasingly recognized
over the last 15 to 20 years (2, 3). Treatment studies have shownmodest
effects in improving the core characteristics of ASD (34, 35). Research
on infants at high familial risk for ASDhas revealed a seemingly narrow
window of opportunity, before the age of 24months, when intervention
may have the potential to ameliorate the unfolding of the core features
of this disorder (5, 6). Intervention studies with infants at high familial
risk for ASD (6, 7) suggest that behavioral intervention in the latter part
of the first, and early second, yearmay bemore effective than later (post-
diagnosis) intervention. Unfortunately, early behavioral markers have
not had sufficient power as predictors of later diagnosis to be clinically
useful, and so, to date, methods for presymptomatic detection have not
been available.

Our results suggest that early brainmetrics, identified on the basis of
their associationwith later ASD-related behaviors, are able to accurately
predict an individual infant’s 24-month diagnosis of ASD, by 6 months
of age.We focused on predicting diagnostic outcome at 24months of
age, a time when the full syndrome of ASD begins to consolidate and
can be reliably diagnosed (8, 9). These findings converge with another
MRI study showing that structural information at 6 and 12 months
of age can accurately predict anASD diagnosis (36). Using functional
neuroimaging, the current study extends these previous findings by
using brain data from a single time point (6months of age) to accurately
predict an ASD diagnosis in 9 of 11 infants at high familial risk for
ASD. These findings demonstrate the potential for early detection of
autism in infants at high familial risk and serve as a proof of concept
that patterns of infant brain measures precede the defining behavioral
characteristics of ASD.

Infants with high familial risk for ASD begin life with about a 20%
chance of developing ASD (37) compared to ~1.5% in infants with low
or unknown risk (2). Because of the 1 in 68 prevalence of ASD in the
population, the clinical application of functional neuroimaging is
likely to be the most valuable in evaluating infants at high familial risk.
Current intervention research that has focused on the first year of life
has been limited to studying entire cohorts of infants at high familial
risk, with little to no ability to assess a specific individual’s likelihood
of receiving a diagnosis beyond the expected recurrence risk. In our
sample, even in the lower bound of the CI, the positive predictive value
of this classifier shows a higher ability to correctly detect ASD in
6-month-old high-risk infants than has been possible with behavioral
screening alone in this age range (38). If these results are replicated in a
new high-risk infant cohort, functional neuroimaging at 6 months of
age could provide a clinically valuable tool for the detection of ASD in
high-risk infants before the development of the full syndrome. This
would open the door to randomized controlled trials aimed at identify-
ing effective interventions by recruiting high-risk infants who have been
identified as having an even greater risk based on their 6-month neu-
roimaging assessment.

Although we have taken many precautions to test the internal
validity of our classification analysis, there are several limitations
that will need to be addressed by future research before the clinical
utility of this method can be fully realized. Although our results are
strong within this sample of high-risk infants, these findings need to
be replicated and extended to an independent high-risk sample of infants.
In addition, there is uncertainty associated with a 24-month diagnosis
of ASD. Future research will have to address the meaning of this uncer-
tainty with regard to the negative predictive value of the classifier. An
effective classifier in the general population would likely require amuch
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Fig. 1. Correct classification of 6-month-old infants at high familial risk for
ASD using functional connectivity MRI. Functional connections were selected
as those that showed a correlation with at least one of the 24-month ASD-related
behaviors, which included measures of social behavior, language, motor develop-
ment, and repetitive behavior. The top two principal components of the function-
al connections that showed a correlation with these behaviors are shown for both
ASD (blue) and non-ASD (red) 6-month-old infants. The two participants that were
incorrectly classified in the leave-one-out nested cross-validation analysis are
circled; these two participants were diagnosed with ASD but were classified as
non-ASD. Classification was correct for 96.6% of 6-month-old high-risk infants.
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Communication and Symbolic Behavior Scales (CSBS)

Mullen Scales of Early Learning (MSEL)

Repetitive Behaviors Scale–Revised (RBS-R)

R R

R R

R R

Threshold P < 0.005, uncorrected

Fig. 2. Differences in functional connectivity in ASD infants versus non-ASD infants. Each panel represents the functional connections that show a relationship to scores on
each of the behavioral assessments (see Table 1): CSBS (top), MSEL (middle), and RBS-R (bottom). For each assessment, the functional connections associated with individual
measureswere combined and projected onto a Talairach brain, with the right hemispheremarked (R). The color and thickness of each connection signify the sign and strength of
the t value it represents. Unpaired two-sample t tests were used to test the difference between groupmeans (ASD versus non-ASD) for each functional connection. Red signifies a
connection that shows more negative connectivity in the ASD infant group on average, whereas blue signifies more positive connectivity. t values were set to a threshold of P <
0.005 (uncorrected), and the thickness of each bar represents its strength. Coordinates for each sphere are listed in table S1. These calculations are only for visualization and should
not be interpreted as differences directly contributing to any individual’s classification.
Emerson et al., Sci. Transl. Med. 9, eaag2882 (2017) 7 June 2017 4 of 8
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larger sample to demonstrate its ability to capture the full breadth of the
heterogeneity in ASD. Finally, MRI is likely too expensive to be feasible
as a general screening tool; however, as genetic information or more
advanced screening techniques become available, neuroimaging may
be useful as a secondary confirmation of enhanced risk. If these findings
could be generalized to more cost-effective and mobile neuroimaging
technologies, it would greatly increase the accessibility of early
screening. Even with the limited sample size of the present study, the
ability of the classifier to predict an individual infant’s later diagnosis
is substantial. This high accuracy was maintained when the classifier was
trained on a smaller subsample and was used to predict 10 independent
infants, suggesting that these results are fairly robust. Therefore, despite
the noted limitations, our results suggest that early differences in the brain’s
functional connections are useful in predicting a later diagnosis of ASD as
early as 6 months of age, well before the onset of the defining behavioral
characteristics ofASD.As the field begins to incorporate other riskmarkers
(for example, parental or genetic factors, multimodal imaging, and other
measures of infant behavior), we will improve our ability to determine
which infants may benefit from early functional neuroimaging.

Our results show that functional neuroimaging with 6-month-old
infants at high familial risk for ASD can accurately predict which in-
dividuals receive a clinical diagnosis of ASD at 24 months of age. Ulti-
mately, this study represents an initial first step toward developing the
earliest diagnostic methods available and may yield the clues necessary
to build efficacious early interventions based on individual risk profiles.
 on June 7, 2017
tp://stm
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MATERIALS AND METHODS
Study design
Participants were part of the Infant Brain Imaging Study (IBIS), an
ongoing longitudinal study of infants at low and high familial risk
for ASD. Infants were recruited, screened, and assessed at one of four
clinical sites: University of North Carolina, University of Washington,
The Children’s Hospital of Philadelphia, andWashingtonUniversity in
St. Louis. The research protocol was approved by the institutional re-
view board at all clinical sites, and parents provided written informed
consent after receiving a detailed description of the study. Data were
used for research purposes only.

A cohort of 59 (18/41, female/male) infants at high familial risk
for ASDwas included in this study: 11 infants diagnosed with ASD at
24 months (11 male) and 48 non-ASD infants at 24 months (30 male).
High-risk infants were defined as having at least one sibling with an
ASD diagnosis. Participants were excluded for comorbid medical or
neurological diagnoses influencing growth, development, or cognition;
previous genetic conditions; premature birth or low birth weight; ma-
ternal substance abuse during pregnancy; contraindication for MRI; or
family history of psychosis, schizophrenia, or bipolar disorder.

Diagnostic testing
All infants included in these analyses participated in a comprehensive
battery of behavioral assessments including the Autism Diagnostic
Observation Schedule (ADOS) (39) and Autism Diagnostic Interview–
Revised (40) at 24 months. The ADOS and all other testing and
interview data were independently reviewed by experienced clinicians
forDiagnostic and StatisticalManual ofMentalDisorders, FourthEdition,
Text Revision (DSM-IV-TR) (41) criteria for autistic disorder or pervasive
developmental disorder not otherwise specified. All ASD-positive infants
were assigned a diagnosis according to clinical best estimate usingDSM-
IV-TR at 24 months of age.
Emerson et al., Sci. Transl. Med. 9, eaag2882 (2017) 7 June 2017
Cognitive and behavioral assessments
The RBS-R (42, 43) is a parent/caregiver-rated measure covering a broad
range of repetitive behaviors. The RBS-R is a questionnaire that focuses
exclusively on restricted/repetitive behaviors. It includes 43 items rated
on a four-point scale: 0, behavior does not occur; 1, behavior occurs and is
a mild problem; 2, behavior occurs and is a moderate problem; 3, be-
havior occurs and is a severe problem. Items are grouped into six concep-
tually derived subscales: stereotyped behavior, self-injurious behavior,
compulsive behavior, ritualistic behavior, sameness behavior, and res-
tricted behavior. Scores on these subscales were used to determine brain-
behavior features used in the analysis.

The MSEL (44) is a standardized, normed, developmental assess-
ment that provides an overall index of cognitive ability and delay. Chil-
drenwere assessed at 24months of age, and their scores on the receptive
language, expressive language, visual reception, fine motor, and gross
motor subscales were used to determine brain-behavior features used
in the analysis.

The Communication and Symbolic Behavior Scales Developmental
Profile (45) is designed to elicit social and communicative behaviors in
infants and was administered at each participant’s 24-month visit. Spe-
cifically, their scores on itemsmeasuring initiation of joint attention and
social interaction were used to determine brain-behavior features in the
primary analysis. These items were chosen to reflect specific aspects of
behavior that we reasoned to be particularly relevant to social develop-
ment at about 2 years of age.

Image acquisition
All scans were acquired at IBIS Network clinical sites using cross-site
calibrated 3T Siemens TIM Trio scanners (Siemens Medical Solutions)
equipped with standard 12-channel head coils. Images were acquired
during natural infant sleep without sedation. The IBIS imaging protocol
included anatomical images (T1- and T2-weighted), diffusion tensor
images [25-direction and 65-direction HARDI DWI (high–angular
resolution diffusion imaging/diffusion-weighted imaging)], and resting-
state fcMRI. This study used a three-dimensional T2-weighted sequence
[echo time (TE), 497 ms; repetition time (TR), 3200 ms; matrix, 256 ×
256 × 160; voxel size, 1 mm3; sagittal acquisition] and a gradient-echo
echo planar image functional sequence (TE, 27 ms; TR, 2500 ms; field
of view, 256 mm; matrix, 64 × 64; voxel size, 4 × 4 × 4 mm3; flip
angle, 90°; bandwidth, 1906 Hz). All included infants provided data
collected during at least two fMRI runs, each run comprising 130 tem-
porally contiguous frames (5.4 min).

fMRI preprocessing
Initial fMRI data preprocessing followed previously described proce-
dures (25, 46, 47) including (i) compensation for slice-dependent time
shifts using sinc interpolation, (ii) correction of systematic odd-even
slice intensity differences caused by interleaved acquisition, and (iii)
spatial realignment to compensate for head motion within and across
fMRI runs. Atlas registration of the functional data was achieved by a se-
quenceof affine transforms (individual fMRIaverage volume→ individual
T2-weighted→ atlas-representative target). All data were registered to
an age-specific (6-month) target atlas to handle shape differences across
developmental age categories (48). The volumetric time series were
resampled in atlas space (3-mm3 voxels) using a resampling procedure
that applied all affine registration transform and correction for head
movement in a single step. Each atlas-transformed functional data set
was visually inspected in sagittal, transverse, and coronal views to ex-
clude potential errors not otherwise identified.
5 of 8

http://stm.sciencemag.org/


SC I ENCE TRANS LAT IONAL MED I C I N E | R E PORT

 on June 7, 2017
http://stm

.sciencem
ag.org/

D
ow

nloaded from
 

Frame censoring
Headmotion, even of submillimetermagnitude, has been identified as a
nonphysiological source of spurious variance in resting-state fMRI data
(49–51). Data were subjected to rigorous frame censoring based on the
frame-to-frame displacement (FD)measure 12, which quantifiesmove-
ment as the sum of the magnitudes of translational movement (X, Y,
and Z) and rotational movement (Pitch, Yaw, and Roll) evaluated at
a radius of 50 mm. Frames with FD >0.2 mm were marked for subse-
quent censoring. Temporally isolated frames, where there were fewer
than six contiguous frames of FD <0.2 mm, were also censored. Each
of the fMRI runs with fewer than 30 uncensored frames was discarded.
To control for potential biases attributable to the amount of data per
cohort, exactly 150 noncensored frames were used for correlation anal-
ysis in each participant, where runs with the largest number of usable
frames were prioritized. There was no between-groups difference in
the FD [t(57) = 0.43; P= 0.79] or the number of total frames censored
[t(57) = 0.45; P = 0.75].

fcMRI preprocessing
In addition to the previously published procedures (52), further prepro-
cessing was conducted before the computation of region-of-interest
(ROI) pair time series correlations. Using only the noncensored frames,
the data were voxel-wise demeaned and detrended within runs, and
nuisance waveforms were regressed out. Nuisance regressors included
(i) the time series of three translation (X, Y, and Z) and three rotation
(Pitch, Yaw, and Roll) estimates derived by retrospective head motion
correction and Volterra expansion derivatives to comprise 24 total
motion regressors (53), and (ii) time series derived from the regions of
noninterest (whole brain, white matter, and cerebrospinal fluid) and
their first derivatives. After nuisance regression, data in frames marked
for censoring were replaced by interpolated values computed by least-
squares spectral analysis (52, 54). The fMRI data were then temporally
filtered to retain frequencies in the 0.009Hz < f < 0.08Hz band. As a last
step, the data were spatially smoothed using a Gaussian kernel (6 mm
full width at half maximum isotropic).

Definition of ROI and correlation computation
Following Pruett et al. (25), candidate ROIs (n = 280) were adopted
from a combination of meta-analyses of ASD studies (46) and of task
data and cortical functional areal parcellations obtained in healthy
adults (47). Three viewers inspected ROI placements in age-specific
atlas templates. Of the 280 ROIs, 50 were partially outside the whole-
brain mask and were removed, leaving 230 usable ROIs (25). ROI rep-
resentative time series were calculated as the average of the time series of
each voxel intersecting the 10-mm-diameter sphere located at a given
ROI center. Pairwise Pearson correlation values were generated from
each of the 26,335 possible pairs of ROIs and then Fisher z–transformed
to improve normality.

Visualization features and group discrimination
To create the visualizations in Fig. 1, a leave-one-out cross-validation
analysis was performed within the entire group of 59 infants to identify
a set of functional connections that were both related to behavior and
showed differences between groups.We generated 59 sets of features by
iteratively removing one participant from the analysis. For each
iteration, the remaining 58 participants were used to define region pairs
whose connectivity showed both a nominal Pearson correlation with
behavior (P < 0.05) and difference between groups (t test, P < 0.05).
The final visualization feature space was then defined as the intersection
Emerson et al., Sci. Transl. Med. 9, eaag2882 (2017) 7 June 2017
(100% consensus) of these sets. To demonstrate that these features can
discriminate between the infant groups, a principal component analysis
was used to define the top two dimensions of variance across all partic-
ipants. Participant’s scores on the first and second principal compo-
nents of this feature space were plotted against each other in Fig. 1.
Information from the classification analysis (see below) was included
to visualize which of the infants were incorrectly classified; however,
the set of visualization features is used only in Fig. 1 to demonstrate that
there is variability in the functional connectivity at the group level that
can discriminate between infants who receive a diagnosis at 24 months
from those who do not.

Classification features and prediction of individual infants
For the classification analysis, one infant was removed from the group
to serve as a test case, whereas the remaining 58 infants were used a
training set. For each test case in the classification analysis, starting from
the full set of 26,335, features were determined within the training set as
the functional connections between ROI pairs that show a nominally
significant (P < 0.05) behavioral correlation, and a leave-one-out
cross-validation analysis was performed within this training set. To
be included in the final set of features for the independent test case, a
functional connection had to show a correlation with one of the behav-
ioral measures in all the cross-validation sets of training data. This final
set of features provided an independently defined set of features that
was used to train a classifier with a linear kernel to discriminate between
infants who are and are not diagnosed with ASD at 24 months. Finally,
the classifier was used to predict the independent test case. This strategy
was repeated using each participant as the test case, creating a fully
cross-validated approach with a nested leave-one-out procedure to
identify features. As a result, the estimation of accuracy was relatively
unbiased in the sense that the training features were selected indepen-
dently of each test case (55). Similar methods are discussed in detail by
Pereira et al. (33), withmanyof the applications reviewedbyGabrieli et al.
(29). In the case where a participant did not have behavioral scores, they
did not contribute information to the feature selection step (see Table 1).
However, their functional connectivity measures were still used to train
the classifier to predict the independent infant.

Finally, after completing the classification analysis, we used the in-
tersection of the 59 independent classification feature sets to visualize
the functional connections thatmost likely contributed to the classifica-
tion accuracy (Fig. 2). Although these features were initially defined by
their relationship with behavior only, we performed a between-groups
t test and projected the t values onto a Talairach brain with a threshold
of P < 0.005 (uncorrected). Our logic was that these regions would be
the most likely to contribute to the discrimination between groups in
the 59 separate support vector machine (SVM)models. This set of clas-
sification features represents only a subset of the features used in the
individual classifiers. Because each classifier contains a slightly different
set of features and is weighted differently, the calculations of group dif-
ferences should not be interpreted as directly contributing to any indi-
vidual’s classification. The Talairach coordinates, average connectivity
values, t values, and P values by group are listed in table S1.

Predicting individual 24-month clinical diagnoses
To determine whether brain features were capable of predicting the
clinical diagnostic outcome of an individual infant, a classification
model, built from an independent group of infants (see above), was
applied to their 6-month functional connectivity data. When this pro-
cess was repeated for all 59 infants, we were able to calculate measures
6 of 8
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of classification performance. Sensitivity was calculated as the pro-
portion of infants with ASD that were correctly identified, whereas
specificity was calculated as the proportion of infants that did not have
ASD that were correctly identified. The positive predictive value was
calculated as the proportion of positive predictions that were truly in-
fants with ASD. Conversely, negative predictive value was calculated
as the proportion of negative predictions that were truly infants with-
out ASD. Finally, 95% CIs for the reported proportions (sensitivity,
specificity, positive predictive value, and negative predictive value)
are calculated according to the efficient score method and corrected
for continuity (56).

The significance of the classification accuracy was determined by
repeating the entire classification analysis (including feature selec-
tion and fitting of the SVM classifier) using randomly shuffled group
labels (within the training sets) to predict each test case. This pro-
cedure estimated the null distribution of classification accuracy and
was repeated 10,000 times to determine what proportion of times a
randomly constructed classifier would perform as well as the classifier
trained with the correct group labels. This distribution and the ob-
served accuracy of the correct labels are shown in fig. S2.

Leave-10-out
To complete the leave-10-out analysis, the nested cross-validation
procedure was repeated with a random set of 10 infants initially
removed as the independent test set. To maintain the general popu-
lation frequency distribution, each set of 10 consisted of two randomly
selectedASD-positive and eight randomly selectedASD-negative chil-
dren. This analysis was run with 1000 random sets, allowing us to
assess the distribution of classifier accuracies when more participants
were kept independent. This represents a very small sample of the full
set of randomized permutations; however, this analysis is meant to
serve only as a demonstration of the robustness of the classification
analysis.

Statistical analysis
All classification analyses were completed using MATLAB’s Statistics
and Machine Learning Toolbox (Mathworks Inc.). SVMs were trained
using a linear kernel using the default setting of the fitcsvm function,
and individual participants were predicted using the predict function.
The default setting of this algorithm accounts for imbalances in the
groups by setting the class prior probabilities to the relative frequencies
of each class and then normalizes the weights to sum to the value of the
prior probability in the respective class. Scripts were designed in-house,
and their workflow is detailed above. Principal components were
calculated using the default settings of the pca function to create a linear
combination of the features space, which was then used for the visual-
ization in Fig. 1. As described above, CIs for the reported proportions
(sensitivity, specificity, positive predictive values, and negative predic-
tive values) are calculated according to the efficient score method and
corrected for continuity (56).
SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/9/393/eaag2882/DC1
Materials and Methods
Fig. S1. Individual classification accuracies.
Fig. S2. Null distribution of classification accuracy.
Table S1. The Talairach coordinates for each of the ROIs.
Table S2. Comparison to independent high-risk sample.
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